

SOURCE APPORTIONMENT OF PARTICULATE MATTER (PM_{2.5}) IN THE UK (INCLUDING COOKING EMISSIONS)

Roy M. Harrison University of Birmingham and National Centre for Atmospheric Science

CONTENT

- Source apportionment by receptor modelling
- The ClearfLo experiment in London
- Results of Chemical Mass Balance (CMB) Model
- Comparison with AMS-PMF data

Receptor Modelling

- Use of air quality data to infer the sources responsible for measured pollution levels (opposite of dispersion modelling!)
- Receptor modelling of airborne particles depends upon an assumption of mass conservation

$$C_i = \sum_{j=1}^{j} f_{i,j} g_j$$

where C_i = airborne concentration of component, *i*

- $f_{i,j}$ = mass fraction of component *i* in particles from source, *j*
- g_j = mass of particles from source *j* in an air sample
- Analysis of many air samples for multiple chemical components is necessary

Types of Receptor Modelling of Particulate Matter

There are two main types

- <u>Chemical Mass Balance</u>
 - Requires only one air sample, although better results are obtained with more
 - Requires knowledge of chemical composition of particles from each source (f_{ij})
 - Varies *9i* for all chemical components to obtain best fit to mass conservation equation

<u>Multivariate Statistical</u>

- Principal Component Analysis widely used, but Positive Matrix
 Factorization (PMF) has advantages and is more frequently utilised
- Requires no advance knowledge of source chemical composition
- Requires many separate samples, and identifies temporal correlations of components (e.g. Na and Cl in sea salt) in a multidimensional space.

Receptor Modelling with CMB Model

 Uses organic molecular markers and trace elements to apportion the carbonaceous component of PM_{2.5}

- Source apportionment of the entire PM_{2.5} is conducted using the Pragmatic Mass Closure Model
- Results have been processed for winter air samples collected at at LNK and HAR

ClearfLo Measurement Site

NK Site During ClearfLo (1)

NK Site During ClearfLo (2)

UNIVERSITY^{OF} BIRMINGHAM

Daily OC Source Contributions at NK and HAR

Daily OC Source Contribution Estimates with Secondary Biogenic Components at NK

UNIVERSITY OF BIRMINGHAM Daily PM_{2.5} Source Contribution Estimates with Secondary Biogenic Components at NK

Daily PM_{2.5} Source Contribution Estimates at HAR

SELECTED MEAN CONTRIBUTION TO PM_{2.5} MASS (µg m⁻³)

	NORTH KENSINGTON	HARWELL
COOKING	0.69 (4%)	0.13 (1%)
WOODSMOKE	0.64 (4%)	0.76 (7%)
TRAFFIC EXHAUST	1.26 (8%)	0.61 (6%)
SULPHATES AND NITRATES	8.0 (51%)	6.2 (56%)
PM _{2.5} MASS	15.7	11.0

COMPARISON WITH AEROSOL MASS SPECTROMETER (AMS)

- AMS operated by University of Manchester.
- Instrument generates a continuous mass spectrum of non-refractory atmospheric particles of < 0.8 μm diameter (PM_{0.8}).
- The mass spectral dataset is disaggregated into source contributions using the PMF program.
- Work in London (Regents Park) as part of the REPARTEE campaigns attributed ~ 1.25 µg m⁻³ to cooking, and ~ 1.0 µg m⁻³ to solid fuel burning.

Median Diurnal Profiles of the Factors from the Three Campaigns (from J.D. Allan et al., ACP, 10, 647-668, 2010)

UNIVERSITY^{OF} BIRMINGHAM

REGRESSION OF AMS FACTOR RESULTS AGAINST CMB DATA

CONCLUSIONS

 Progress is being made in quantifying the smaller sources contributing to PM_{2.5} mass.

The different methods correlate well, but do not agree on absolute mass contributions.

 Based upon current knowledge, the contribution of food cooking to PM_{2.5} is relatively small (<5%) but may be greater in areas with many restaurants.

ACKNOWLEDGEMENTS

University of Birmingham

Dr Jianxin Yin

Dr David Beddows

University of Manchester

Dr James Allan

Dr Dominque Young

THANK YOU