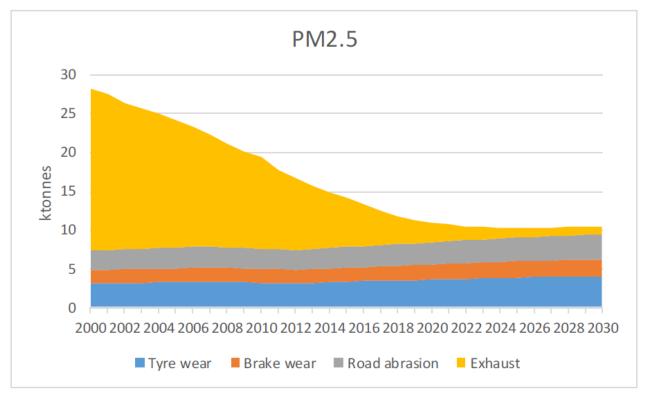


Non Exhaust Emissions from Vehicles

James Allan

University of Manchester

National Centre for Atmospheric Science

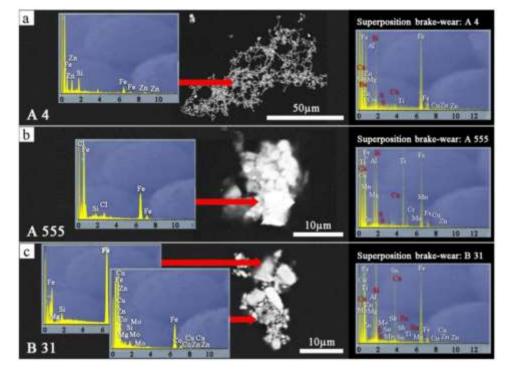

Introduction

- Sources of non exhaust emissions
- Environmental evidence
- Possible effects
- Research questions
- Possible mitigation measures

Zero emission?

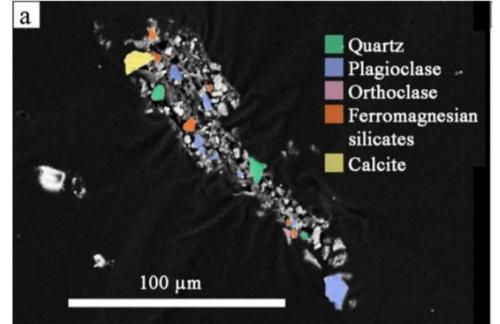
National Centre for Atmospheric Science

- A more correct term would be 'zero exhaust emission'
- Since the introduction of filtration, most new diesel and gasoline vehicles emit little mass of particulate anyway
- Going forward, non exhaust emissions are predicted to be the dominant source of primary particulate matter from vehicles

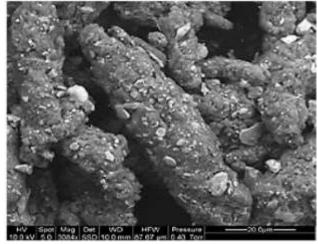

AQEG, Non Exhaust Emissions from Road Traffic, DEFRA, 2019

MANCHESTER

- Through routine action, brakes produce particulate through abrasion and material being 'burned' off
- Composition of the particles reflective of the composition of the disc and pads
 - Pad composition varies greatly according to local legislation and intended characteristics
 - In addition to carbonaceous material, contains a large amount of metals



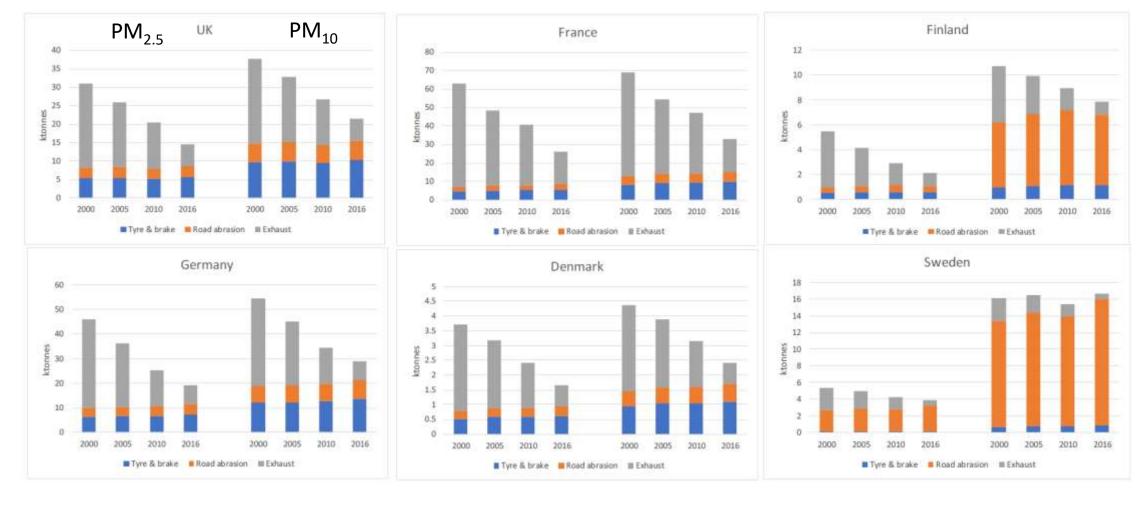
Sommer et al., Aerosol and Air Quality Research, 18: 2014–2028, 2018


Tyre/road wear

MANCHESTER

- Formed through abrasion between tyres and road
- Tyre wear particles typically large carbonaceous particles containing embedded mineral particles
- Road wear can be enhanced by the use of studded tyres
- Modern tyres contain a large fraction of synthetic polymers, so are now considered a source of microplastics

Sommer et al., Aerosol and Air Quality Research, 18: 2014–2028, 2018


Panko et al., Atmosphere 10, 99, 2019.

Trends with country

The University of Manchester

AQEG (2019)

Resuspension

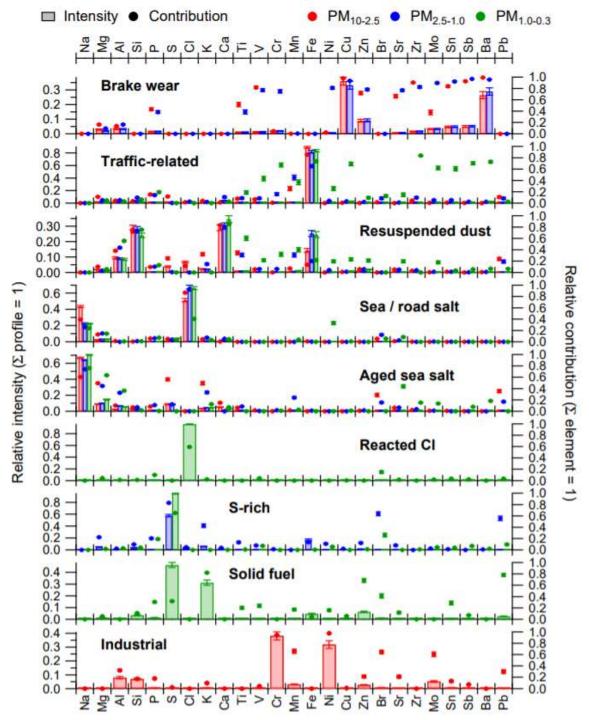
MANCHESTER

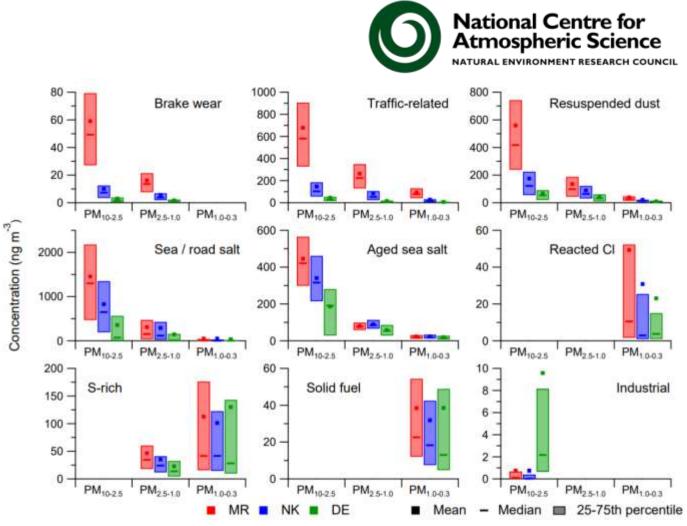
- Loose dust on the road, made airborne by tyre friction or air turbulence
- Can be a mixture of:
 - Minerals/soils
 - Construction/demolition debris
 - Grit/salt residue
 - Exhaust soot
 - Previously settled brake/tyre/road wear
- Enhanced in drier conditions

Atmospheric measurements

- Particles are refractory and insoluble, so measurement of composition is difficult
 - Methods such as IC and AMS will not detect them
 - While they are light absorbing, urban Aethalometer measurements are typically dominated by soot
- Methods of study include:
 - Metals analysis by ICP-AES/MS or X-ray spectroscopy
 - Electron microscopy
 - Online size distribution data in conjunction with other metrics
 - Analysis of tyre wear polymers by pyrolysis or FTIR

Photo: University of Manchester





• Emissions profiles highly variable, making receptor modelling for source apportionment very difficult

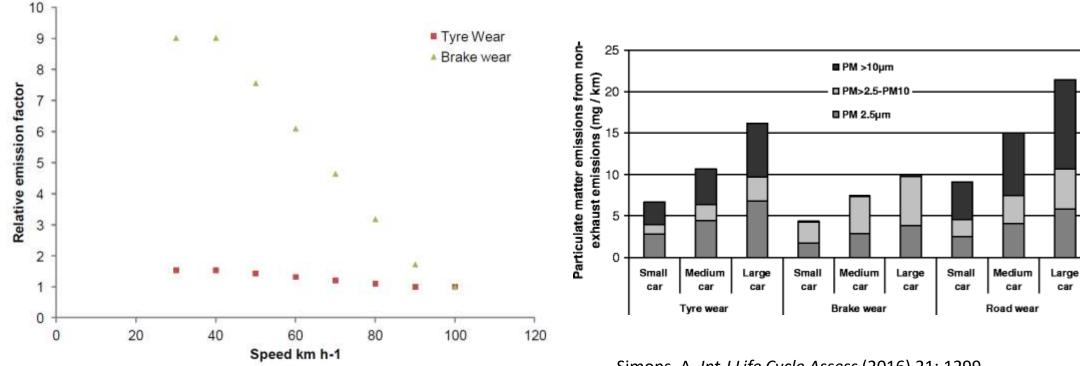
Reference	Brake wear	Tyre wear	Re-suspension
Adachi and Tainosho (2004)	Fe, Ba, Cu, Sb, Zr	Zn	2
Schauer et al. (2006)	Fe, Cu, Ba		
Grieshop et al. (2006)	Cu, Sb, Ba and Ga		
Wahlin et al. (2006)	Cr, Fe, Cu, Zn, Zr, Mo, Sn, Sb, Ba and Pb	Al, Si, K, Ca, Ti, Mn, Fe, Zn and Sr (together with road dust)	
Tanner et al. (2008)	Cu, Cd	Zn	
Canepari et al. (2008)	Ba, Fe, Sb, Sr	-	-
Harrison (2009)	Ba, Cu	-	AI
Dongarra et al. (2009)	Cu, Mo, Sb	-	
Fabretti et al. (2009)	Cu, Zn, Sb, Sn (vehicular abrasion)	-	Rb, Sr, Mn, Fe, As
Keuken et al. (2010)	Cu	Zn	_
Bukowiecki et al. (2010)	Fe, Cu, Zn, Zr, Mo, Sn, Sb and Ba		
Pey et al. (2010)		-	Fe, Ca, Sb, Sn, Cu, Zn
Perez et al. (2010)	Sb, Cu, Ni, Sn (wear of brake, tire and other parts)		Fe
Amato et al. (2011a)	Fe, Cu, Zn, Cr, Sn, Sb	OC, S, Zn	Al, Ca, Fe, V
Apeagyei et al. (2011)	Fe, Ti, Cu, Ba	Zn, Ca, W, K, Fe, Ti, Cr, Mo	
Duong and Lee (2011)	Ni, Cu	Zn	
Ondráček et al. (2011)	Cu, Ba, Fe, Zn	-	
Song and Gao (2011)	Sb, Cu, Fe, Pb	Zn, Co	
Sahu et al. (2011)	Zn (brake and tyre wear)	-	
Peltier et al. (2011)		-	Al, Si, Ti, Fe
Harrison et al. (2012b)	Ba, Cu, Fe, Sb	Zn	Si, Al

P. Pant, R.M. Harrison: Atmospheric Environment 77, 78-97, 2013

MR=Marylebone Road (roadside) NK=North Kensington (urban background) DE=Detling (rural background)

Visser et al., *Atmos. Chem. Phys.*, 15, 11291–11309, https://doi.org/10.5194/acp-15-11291-2015, 2015.

Effects


- Most non exhaust emissions are thought to be more of a significant contribution to PM_{10} than $PM_{2.5}$ (although the $PM_{2.5}$ contribution is becoming more significant)
- Health outcome data are generally more strongly associated with PM_{2.5} than PM₁₀, suggesting non exhaust emissions are not as important, however this may change as PM_{2.5} concentrations continue to decrease
- Brake and tyre wear particles in particular are known to contain PAHs and metals, which are known to be toxic by inhalation
- The effects of microplastics by inhalation are not known
- The metals, PAHs and microplastics can have an effect on the wider environment (rivers, soils, groundwater)
- Currently there is little or no direct regulation or mitigation of this as a source of atmospheric pollution beyond ambient PM_x directives

Emissions modelling

• While emissions data exists, it is not as comprehensive as exhaust emissions

Simons, A. Int J Life Cycle Assess (2016) 21: 1299. https://doi.org/10.1007/s11367-013-0642-9

AQEG, 2019

Future vehicles

- Electric/hybrid/self-driving vehicles are heavier than the equivalent specification internal combustion engine vehicles
 - More energy dissipation required during braking
 - Larger contact area between tyre and road needed – more wear and resuspension
- Regenerative braking significantly mitigates the brake wear emissions

- What is the extent of non exhaust emissions?
 - Do we expect emission hotspots in locations not traditionally monitored, e.g. motorway slip roads?
- What is the size and composition of these particles?
 - If tyre abrasion particles are large, are they even a problem for PM_{10} ?
- Are they having an effect on peoples health and/or the wider environment?
- What do we expect these emissions to do in the future?
 - Will we see a net benefit or disbenefit from electric/hybrid/self-driving cars?
- How can we mitigate these emissions and public exposure?

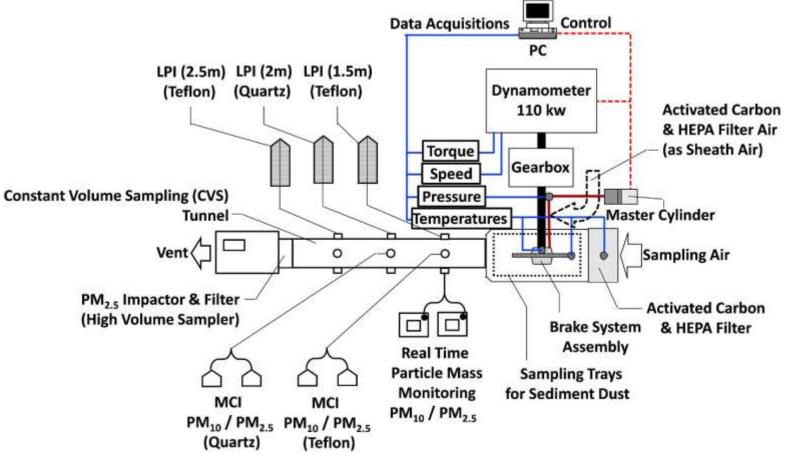
Mitigating traffic/behaviour?

- Reduce the number of vehicles on the road, e.g. congestion charging, public transport, cycling etc.
- Separate public from traffic through urban planning
 - $\mathrm{PM}_{\mathrm{2.5-10}}$ tends to be relatively localised due to gravitational settling and impaction
- Promote less aggressive driving (e.g. smart roads) to reduce acceleration, braking and fast cornering, although evidence supporting the effectiveness of this is currently lacking
- In colder countries, regulations concerning the use of studded tyres present a major challenge, trading off road wear vs safety

Trees/green walls?

- Trees, hedges or green walls could be placed between roads and pedestrians
 - While these are very limited in their ability to trap NO₂ and PM_{2.5}, they are slightly more efficient at removing PM₁₀
 - They keep people further away from the roads, reducing exposure
 - They have other benefits, e.g. sound suppression, visually appealing
- Consideration must be paid to potential disbenefits, e.g. disrupting street canyon air flow, release of biogenic VOCs

Supressing resuspension?


- Increasing road tread depth can help suppress resuspension
- Road sweeping/washing technology well established
- Road can be treated with calcium magnesium acetate or magnesium chloride to promote water retention, preventing the dust from drying out
- Washing/sweeping/treatment not currently regarded as a general solution
 - Results from trial programmes have been mixed
 - Even if they worked reliably, would require continual use to prevent build-up
- Sweeping/washing in especially dusty environments (e.g. around construction/demolition sites) is still prudent

1824

- While certain aspects of tyre/brake formulation are regulated, this is with respect to composition and not explicitly emissions
- A standardised method for measurement of brake emissions is currently in development and type approval standards may follow

National Centre for

Atmospheric Science

H. Hagino et al. / Atmospheric Environment 131 (2016) 269-278

Tyre/Brake formulation?

- There is a strong commercial motivation to reduce emissions from brakes, so companies are currently investing in R&D on this topic
 - In addition to responding to future regulations, customers would benefit from cleaner wheels
- Tyre formulation will likewise have to adapt to any future legislation
- Newly developed products could be fitted to the existing fleet, so could be implemented relatively quickly

Dust capture?

MANCHESTER

- Filtration around brake pad to capture brake emissions
 - Or we just go back to drum brakes...
- Flow around wheel directed through a filter in the wheel arch
 - Would collect most forms of non exhaust emissions, although concept is currently unproven
- These solutions would likely only apply to new vehicles
- Would add to the maintenance schedule of vehicles

MANCHESTER

Summary

- As emissions of exhaust PM continues to decrease, non exhaust emissions will become more and more significant for the ambient PM budget close to roads
- The problem is not going away with electric/hybrid vehicles, although the net effect of regenerative braking vs increased vehicle mass remains to be seen
- More research is needed to better characterise the emissions and their effects on human health and the environment
- Brake and tyre technology are not currently regulated according to airborne emissions, but may be in the future
- While technical mitigations may be possible, reducing traffic volume and separating traffic from pedestrians are currently the most effective solutions