

Ricardo Energy & Environment

Feasibility Study to improve NO2 in Hafod-yr-Ynys Maria Godfrey & Beth Conlan Welsh Air Quality Forum th October 2017

Image Landsat / Copernicus mage © 2018 The GeoInformation Group

ee.ricardo.com

Google Earth

Feasibility Studies in the UK

Clean Air Zones – 1st group

- Leeds
- Nottingham
- Derby
- Birmingham
- Southampton
- London

Clean Air Zones – 2nd group

- 23 LAs including
- Newcastle
- Bristol & Bath
- Manchester
- Glasgow
- Edinburgh

Clean Air Zones – 3rd group

33 LAs including

- Liverpool
- Oxford
- Portsmouth
- Bradford
- Reading
- Leicester
- Stoke on Trent

Wales

- Cardiff
- Caerphilly

Geometry

Steep sided valley Street canyon

Hafodyrynys Road

Ministerial direction

- Undertake as part of the UK plan for tackling roadside NO2 in 2017, a feasibility study, in accordance with HM Treasury Green Book, to identify the option which will deliver compliance with legal limits for NO2 in the area in the shortest possible time.
- Initial scoping proposals 31st March 2018
- Initial Plan 30th September 2018
 - The case for change
 - Identifying, exploring and developing options
- Final Plan 30th June 2019
 - Detail the preferred option with a full business case
- WeITAG Five Cases Model used as follows:
 - Strategic case: the case for change, fit with policies and well-being objectives
 - Transport case: does the proposal offer good public value for money and maximise contribution to the well-being goals?
 - Financial case: is the proposed spend affordable?
 - **Commercial case:** how can the scheme be procured? Is it commercially viable?
 - Management case: is the scheme achievable? Can it be delivered?

Air Quality today

 Annual mean fluctuates just 3 µg/m³

 Hourly limit value highest in 2012 (137) and 2017 (132) and the lowest in 2014 (75) when roadworks impeded traffic flows

Seasonal trends - annual

- Typical diurnal patterns am peak highest during weekday
- Highest in winter

Seasonal trends - hourly

- The key influencing factor for exceedances of the objectives is clearly seasonal.
- The drivers for this are likely a combination of meteorology (low temperatures, temperature inversions, wind speeds) and seasonal emissions sources (cold starts, domestic heating).

	January-2017				February-2017					March-2017							April-2017											
31	1	2	3	4	5	6	28	29	30	31	1	2	3	25	26	27	28	1	2	3	25	26	27	28	29	30	31	
7	8	9	10	11	12	13	4	5	6	7	8	9	10	4	5	6	7	8	9	10	1	2	3	4	5	6	7	
14	15	16	17	18	19	20	11	12	13	14	15	16	17	11	12	13	14	15	16	17	8	9	10	11	12	13	14	
21	22	23	24	25	26	27	18	19	20	21	22	23	24	18	19	20	21	22	23	24	15	16	17	18	19	20	21	300-400 ug/i
28	29	30	31	1	2	3	25	26	27	28	1	2	3	25	26	27	28	29	30	31	22	23	24	25	26	27	28	
4	5	6	7	8	9	10	4	5	6	7	8	9	10	1	2	3	4	5	6	7	29	30	1	2	3	4	5	
S	s	М	Т	W	Т	F	s	s	М	Т	W	Т	F	s	s	М	Т	W	Т	F	S	s	М	Т	W	Т	F	200-300 ug/i
		Ма	y-20	017					Jun	e-2	017					Jul	y-20)17				August-2017				200-300 ug/i		
29	30	1	2	3	4	5	27	28	29	30	31	1	2	24	25	26	27	28	29	30	29	30	31	1	2	3	4	
6	7	8	9	10	11	12	з	4	5	6	7	8	9	1	2	3	4	5	6	7	5	6	7	8	9	10	11	
13	14	15	16	17	18	19	10	11	12	13	14	15	16	8	9	10	11	12	13	14	12	13	14	15	16	17	18	100-200 ug/
20	21	22	23	24	25	26	17	18	19	20	21	22	23	15	16	17	18	19	20	21	19	20	21	22	23	24	25	
27	28	29	30	31	1	2	24	25	26	27	28	29	30	22	23	24	25	26	27	28	26	27	28	29	30	31	1	
3	4	5	6	7	8	9	1	2	3	4	5	6	7	29	30	31	1	2	3	4	2	3	4	5	6	7	8	
s	s	М	Т	W	Т	F	s	s	М	т	W	Т	F	s	s	М	т	W	т	F	s	s	М	Т	W	Т	F	40-100 ug/m
	Se	pter	nbe	r-20	17			C	cto	ber-	201	7			No	ven	ıber	-20	17			De	ecen	ıber	-20	17		
26	27	28	29	30	31	1	30	1	2	3	4	5	6	28	29	30	31	1	2	3	25	26	27	28	29	30	1	
2	3	4	5	6	7	8	7	8	9	10	11	12	13	4	5	6	7	8	9	10	2	3	4	5	6	7	8	0.40.00/m2
9	10	11	12	13	14	15	14	15	16	17	18	19	20	11	12	13	14	15	16	17	9	10	11	12	13	14	15	0-40 ug/m5
16	17	18	19	20	21	22	21	22	23	24	25	26	27	18	19	20	21	22	23	24	16	17	18	19	20	21	22	
23	24	25	26	27	28	29	28	29	30	31	1	2	3	25	26	27	28	29	30	1	23	24	25	26	27	28	29	
30	1	2	3	4	5	6	4	5	6	7	8	9	10	2	3	4	5	6	7	8	30	31	1	2	3	4	5	
S	s	м	т	w	т	F	S	s	м	т	w	т	F	s	s	м	т	w	т	F	s	s	м	т	w	т	F	

Emission factors – use of OPUS measurements

- Steep terrain not reflected in COPERT emission factors
- Substantial differences especially at low speed

Dispersion modelling

- Typical gaussian dispersion models not appropriate
- USEPA GRAL/GRAMM Computational Fluid Dynamics model
- 9x11km at 1.5m resolution
- 200 height points to build the terrain model
- Use of Meteorology model for the terrain – wind field with westerly boundary conditions

Short list of measures

 The WeITAG stage 1 long list of 30 measures appraised for Effectiveness, Timescales and Deliverability

Scenario number and description of potential measure to improve air quality

1 - Change Signal Timings at Crumlin Junction

2 - Signalise the A472/B4471 as a Priority Junction and introduce an eastbound queue detector

- 7 Reclassify National Speed Limit to 50mph on the A472 Hafod-yr-Ynys Road
- 11 Demolish Dwellings at Woodside Terrace and Re-align Road
- 13 Peak Hour HGV Bans
- **15 Emissions Barrier**
- 20 Rear Access to Properties and Install NO₂ Filtration
- 26 Clean Air Zone / Low Emission Zone
- 27 Air Quality Public Information Campaign

28 - Bypass

Signal timings at Crumlin junction

- No change in overall traffic volume
- Removal of traffic am peak queue up the hill
- 1-4 µg/m³ decrease
- £1-2m spent in 2015 to improve the junction
- Same impact at Swyffryd junction

Site	Modelled NO ₂ (µg m ⁻³)								
	Baseline (no	Sooporio 1							
	measure)	Scenario I							
CCBC48	57.9	55.1							
CCBC60	36.9	35.1							
CCBC83	68.9	65.6							
CCBC79	53.6	51.0							
Auto Site	64.3	61.2							
Façade 1	86.7	82.5							
Façade 2	96.2	91.5							

Demolition of residential housing

- For this screening assessment scenario of removal of housing on Woodside Terrace
- No changes to emissions
- 8% reduction to houses north of Woodside Terrace
- Indication that all houses southside to be removed to be effective

Peak hour HGV ban

- Peak hour HGV account for 35% of total HGV
- Assume 50% displacement; 50% to interpeak
- Impact is positive but only just
- Could be more effective if packaged up with other traffic management measures
- Move to Stage 3 assessment
- Wider impacts to be assessed....

Site	Modelled NO ₂ (µg m ⁻³)								
	Baseline (no measure)	Scenario 13							
CCBC48	57.9	55.7							
CCBC60	36.9	35.5							
CCBC83	68.9	66.3							
CCBC79	53.6	51.6							
Auto Site	64.3	61.9							
Façade 1	86.7	83.4							
Façade 2	96.2	92.5							

Barrier

- Brings closer to compliance ~12% reduction
- Engineering constraints
- Pavement and emergency access
- Visual amenity
- Screened out on feasibility

Class D Clean Air Zone

- Effective but not into compliance based on 2017
- Excess emissions due to gradient
- May bring forward compliance from 2029 to earlier year
- Deliverability with charging to be considered in Stage 3

Site	Modelled NO ₂ (µg m ⁻³)									
	Baseline (no measure)	Scenario 26								
CCBC48	57.9	40.9								
CCBC60	36.9	26.3								
CCBC83	68.9	48.8								
CCBC79	53.6	37.9								
Auto Site	64.3	45.5								
Façade 1	86.7	61.2								
Façade 2	96.2	67.8								

Bypass

- Brings to below current background levels
- Highly effective
- Timescales likely to be late 2020's and unlikely to bring forward compliance
- Displacement of emissions into other communities

Speed limit changes

- Suggestion to reclassify the national speed limit at the top of the hill to 50 mph
- Screened out as negligible number of vehicles over 50 mph
- Further suggestion to consider 30 mph from bottom to top of hill
- To be considered further in Stage 3

Measures going forward

Change Signal Timings at Crumlin Junction	\checkmark
Signalise the A472/B4471 as a Priority Junction and introduce an eastbound queue detector	\checkmark
Reclassify National Speed Limit to 50mph on the A472 Hafod-yr-Ynys Road	\checkmark
Demolish Dwellings at Woodside Terrace and Re-align Road	\checkmark
Peak Hour HGV Bans	\checkmark
Emissions Barrier	×
Rear Access to Properties and Install NO ₂ Filtration	×
Clean Air Zone / Low Emission Zone	\checkmark
Air Quality Public Information Campaign	\checkmark
Bypass	×

Beth.conlan@Ricardo.com

Ricardo Energy and Environment.

ee.ricardo.com